工业自动化控制器与对象仿真系统

智能 PID 与 DDC 仿真软件使用说明

版本 V5.0

2019年04月23日

北京华晟云联科技有限公司编制

下载地址: http://www.cecloud.net/Home/DownSoft

目录

1,	CO	SAI-PIDDDC 仿真接口软件介绍	3
	1.1	COSAI-PIDDDC 仿真接口软件简介	3
	1.2	COSAI-PIDDDC 仿真接口软件的主要功能	3
2,	COS	AI-PIDDDC 仿真接口软件操作说明	5
	2.1	COSAI-PIDDDC 安装	5
	2.2	仿真对象连接	6
	2.3	仿真软件与组态的设置	7

1、 COSAI-PIDDDC 仿真接口软件介绍

1.1 COSAI-PIDDDC 仿真接口软件简介

下载地址: http://www.cecloud.net/Home/DownSoft

COSAI-PIDDDC 是由北京华晟云联科技有限公司提供,用来代替智能 PID 仪表,DDC 模块,实现编程调试与组态软件的连接。它与组态软件一起,用于在 计算机上模拟智能 PID 仪表,DDC 模块的功能,可以在开发阶段发现和排除错误, 从而提高用户程序的质量和降低试车的费用。

该软件可以与大量的仿真对象连接,例如交通灯、机械手、温度 PID 控制、 恒压供水等等,也可以与大型的过程控制系统,大型的柔性制造系统对接。软件 支持百特仪表、研华协议,支持 MODBUS/RTU, MODUBS/TCP 协议。组态软件,Matlab 直接访问。一般需要虚拟串口软件,在计算机上实现虚拟串口对。如果使用北京 华晟云联的 MODBUS/TCP 协议模块,则不需要虚拟串口。

当有多名学生同时进行试验时,由于实验室硬件系统数量有限,无法同时满 足所有学生同时调试程序,就需要 COSAI-PIDDDC 仿真软件来满足教学的要求。 学生可以在自己的计算机上使用 COSAI-PIDDDC 对硬件系统进行仿真,调试程 序。调试通过后再下载到实际硬件中进行验证,大大节省了硬件系统的占用时间。

1.2 COSAI-PIDDDC 仿真接口软件的主要功能

软件能够仿真大部分功能与指令:

1、提供百特 XMA5000 智能 PID,包括内给定,外给定两个仪表。协议为 XMA 串口协议。

2、提供百特 FBA5000 智能 PID,特别设置一个内给定,一个外给定。协议为 MODBUS/RTU 串口协议。

3、提供研华 ADAM-4000 DDC 模块,包括 ADAM4117 (可以使用为 ADAM4017), ADAM4024, ADAM4050 三个仪表两套。协议为研华串口协议。

4、提供研华 ADAM-4000 DDC 模块,包括 ADAM4117 (可以使用为 ADAM4017), ADAM4024, ADAM4050 三个仪表两套。协议为 MODBUS/RTU 串口协议

5、提供华晟云联 AS3700 DDC, 16DI/16D0/14AI/6AO。协议为 MODBUS/RTU

串口协议。

6、提供华晟云联 AS3900 DDC, 16DI/16D0/14AI/6A0。协议为 MODBUS/TCP 协议。

COSAI-PIDDDC 版本仿真接口平台,实现控制器、对象与组态软件的对接。 COSAI-PIDDDC 支持各种组态软件组态监控,支持 Flash 和 Visual Studio 编写的对象。

COSAI-PIDDDC 仿真接口软件控制平台由菜单栏,工具栏,模块选择区,载 入程序显示区,各通道控制量显示区等构成。

1,	直接运行	COSAI-PIDDDC,	如图 1.2.1 所示:

骎 智能PID。版本5.5.1.1,修改日期201904221410				_	×
百特智能PID 研华DDC模块 华晟云	联仿真与控制模块	串口通信计次			
串口com Comi ~ 连接	断开	切换对象窗口显示	组态未连接	对象未连接	
● 百特XMA5000智能FID ○ 百特FBA6000智能FID	□ 两个PID串级,	PID2_SP=PID1_MV			
内给定XMA56VO,地址1,9600,8,N,2		l <u>t</u> 2, 9600, 8, N, 2			
测量值通道 ~	测量值通道	~			
操作值通道	操作值通道	~			
AI4通道	给定值通道	→ AI4jį	通道		
○ 直接PID ● 増量PID □ PID正作用	○ 直接PID ④	增量PID 🗌 PID正作	用		
给定值: 30 %	给定值: 30.00	%			
过程值: 0 %	过程值: 0	%			
操作值: 100.00 %	操作值: 100.00	%			
手操值: 100.00 %	手操值: 100.00	%	-		
比例带: 50	比例带: 50		_		
积分值: 20 秒,>3600取消	积分值: 20	秒,>3600取消			
微分值: 0 秒	微分值: 0				
手动自动	手动	自动			
PID1处于自动模式	PID2处于自动模式				
全部工程里范围: 0-100,XMA5666可以选择手动给定 对象连接后,无法修动过程值。纽太连接后,无法修	, 类似于旋钮定位器给 ካթ т р。	定。			
13%/庄按//,乙本修//2在值。组动庄接后,乙本修 自动状态,不能修改操作值。手动时,组态或界面修	次4.4.000				
9600,8,2,11.只支持单通道,组态王地址1:0,不能多	通道	F	1111 异法		

图 1.2.1 COSAI-PIDDDC 软件

同时打开对象界面。

COSAI-PIDDDC 可以在计算机上对用户组态进行离线仿真与调试。 COSAI-PIDDDC。

2、COSAI-PIDDDC 仿真接口软件操作说明

2.1 COSAI-PIDDDC 安装

软件支持 WINXP、 WIN7 X86/X64、Win10 x86/x64。

按照过程中可能有忽略的项目。如果 FLASH 运行有问题,则单独在程序组中运行"Flash 控件安装",可能需要下载最新的插件。

一定注意以下安装方法,所有辅助软件都拷贝在"辅助软件"文件夹中:

(1) 默认需要安装 Microsoft .NET Framework 4 Client Profile。DotNetFX40Client。一般 WIN10 已经系统默认安装了该软件。

(2) 如果软件无法访问 DLL,则需要安装 vcredist_x86。

(3)如果系统直接报错,可能是 Flash 插件没有安装,请运行 adobeflashplayer.exe,很可能需要到 https://www.flash.cn/下载新的版本。

(4)一些 Flash,可以安装 Flash 独立的播放器,你可以让所有 flash 都在这个播放器中播放,而不需要内置到 COSAI 软件中。

2.2 仿真对象连接

1、直接在另外一个窗口打开Flash或者U3d的实训对象画面,并打开,点击 "连接仿真接口"按钮,将控制对象连接到仿真PLC上。新版本有时可以自动连 接,但是不一定成功。如图2.2.1所示。如果对象左下侧按钮看不到,可以减少 窗口宽度。

图2.2.1 实训对象仿真接口连接

2、连接对象后,选择接口信息,如图2.2.2所示。表中显示出了对象的I0 分配表,这里任何内容都不能修改。一定要核对这里的I0分配表,与程序中点位 相对应。

	10 〇 在木約	包件由爆	₩ - IS7	-300//00连口放件CIS	\$7300\/51			
	「天通信」の	1111日	版 [57 无连接]	授权与野罟等[未接	57500¥5]	半键焊配		
			信白		(\$14)		104	
立即切換模块选择 ● 百特智能FID仪表 系统信息与仿真控制器类型设置 → ○ 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	块 []	软件ID: 对象子》 I0点位,	: 3030, 系统控制 依次是 序号	软件数据编码类型:Flas 选择,单击是否控制(单 数字重传感器,执行器, 子系统名	h,通信协议崩 击输入0或1回: 模拟里传感器	(本: 11.1) 年修改),修改控制 丸行器,内存区。4- 是否控制	权 20mA对应6400-320 IO数目)00 仿真名
软件名: CIS-57300接口软件, ID: 107300, 授权等级2 授权状态 没有连接 对象ID 3	2) 连对家	•	0	CEC11版本对象		控制	11, 9, 14, 7	不是仿理
同步信息,没有加入组之前可以修改 组通信服务IP: 127.0.0.1 加入组名:大内高手 用户名: ZHOU 组通信服务端口: 9217 同步状态:								
系统信息:支持¥1.1.41.2.42.1通信对象,地授权软件北京华晟云联科技有限公司			序号	子系统名	点位名	IO地址	I0数值(单击回	车修改へ
简便用止版软件,技不与捐售支持www.UEUIoud.net		•	0	CEC11版本对象	LS101		0	
5.5.1.1201904221410			1	CEC11版本对象	LS102		0	
此版本支持127.0.0.1及本地IP地址,1024位数字IO,1024通過模拟重AI/AO			2	CEC11版本对象	LS103		1	
开始连接授权,没有获得授权之前为演示版本!			3	CEC11版本对象	LS104		0	
未收到主程序的对象信息 等待连接授权软件			4	CEC11版本对象	PS101		0	
			5	CEC11版本对象	TS101		0	
			6	CEC11版本对象	TS102		0	
			7	CEC11版本对象	TS103		0	
			8	CEC11版本对象	TS104		0	
			9	CEC11版本对象	TS105		0	
			10	CEC11版本对象	TS106		0	
			11	CEC11版本对象	XV101		0	
			12	CEC11版本对象	XV102		0	
			13	CEC11版本对象	XV103		0	~
已经连接控制器 对象通信 以太网组态无	通信			串口通信无连接		没有授权:剩余	20分0秒	

图2.2.2 对象接口

这里可以切换XMA智能仪表,研华ADAM模块,云联AS模块。

这里可以看到授权信息,多组对象公共实验的组信息。

在控制器窗口上侧,显示当前可用串口,任何时候选择一个。则立即打开了。除非你手动断开。如果

有对象连接,或者有组态连接,则显示这样的信息在右侧上方。如图所示。

2 智能PID。版本5.5.1.1,修改日期201904230710 - □ ×								×
百特智能PID 研华DDC模块 华晟云联仿真与控制		糞块	串口通信计次					
串口сом Соми	~	连接 断开		切换对象窗口显示	组态未连接	对象已连接		

2.3 仿真软件与组态的设置

1. 设置扫描方式

COSAI-PIDDDC仿真接口软件有多种PID与DDC模块,注意选择,而且理解生效。

2. 虚拟串口

创建虚拟串口。为了使用串口,需要使用虚拟串口软件,创建串口对,如图 2.3.1 所示。

Virtual Serial Port Driver 6.9 by Eltima	Software 🗖 🗖 🗶
<u>P</u> ort pairs <u>O</u> ptions <u>H</u> elp	
Serial ports explorer	Manage ports Port access list Custom pinout
Virtual Serial Port Driver Physical ports Virtual ports	VSPD by Eltima can create virtual serial ports with any names you like, so you are not limited to COMx names only. However, please, make sure that programs working with these ports support custom port names.
	First port: COM3 Add pair
⊞∰ COM2	Second port: COM4
E - ∰ COM6	
🛄 Other virtual ports	First port: COM1 Delete pair
	Second port: COM2
	Enable strict baudrate emulation
	Break line/Restore connection
	All virtual serial pairs will be removed from your system. Please, make sure all ports are closed.
For help press F1	

图 2.3.1 虚拟串口 VSPD 软件

3、组态软件接口,直接运行组态软件。如果是 XMA5000 系列,则选择智能 模块-百特-XMA-COM。如图 2.3.3。

设备配置向导——生产厂家、设备名称、通讯方式	×
设备配置向导将辅助您完成设备的安装	
	^
□· 鞍山讨	量所
	龙自动化设备有限公司
	目控仪表广
	•
E FC	C5000
	1类仪表
	串口
	伏 🗸
<	>
─您所选的设备—	
生产厂家: 百	特
设备名称: X	M类仪表
高级查找 通信描述: 周	
	_
< 上一步(8) 下一步(N) > 取消

如图 2..3.3 组态软件

设置好之后,就可以建立组态软件与仿真软件的连接了,进行对象的仿真实 验。

4、组态软件接口,直接运行组态软件。如果选择 AS3920 模块,以太网协议, 地址 127.0.0.1。如图 2.3.3。

3、各个控制模块设置

3.1 百特智能 PID 仪表

真实的 A 系列产品上产品如图所示。

仿真提供了百特 XMA5000 智能 PID,包括内给定,外给定两个仪表。协议为 XMA 串口协议。

仿真提供了百特 FBA5000 智能 PID,特别设置一个内给定,一个外给定。协议为 MODBUS/RTU 串口协议。

如图所示,可以切换两种控制器。

连接了对象之后,可以设置各个通道所对应的对象中的传感器或者执行器。

💀 智能PID。版本5.5.1.1,修改日期201904230710)			_	\times
百特智能PID 研华DDC模块 华晟z	5.联仿真与控制模块	串口通信计次			
串口сом Соми ~ 连接	断开	切换对象窗口显示	组态未连接	对象已连接	
串口COM COM1 	 断开 ● 两个PID串级, ● 外给定XMA5666,地; > 测里值通道:III 操作值通道:III 操作值通道:III ● 直接PID ● 给定值:0.00 过程值:0.00 过程值:0.00 过程值:13.80 比例带:50 积分值:20 微分值:20 微分值:0 手动 PID2处于自动模式 *,类似于旋钮定位器给 *没下1.0。 *通道 	<pre>切换对象窗口显示 PID2_SP=PID1_MV ut2,9600, 8, N, 2 01</pre>		□ 对象已连接	

注意执行器选择,两个 PID 不能都控制一个执行器。所以另外一个可以选择"不控制"。

算法可以选择直接 PID, 增量 PID。

单击"PID 算法",可以看到算法公式帮助。

🖷 智能PID。版本5.5.1.1,修改日期20190423	30710			_	×
百特智能PID 研华DDC模块 ·	华晟云联仿真与控制模块	串口通信计次			
串口com Com1 ~ 连担	赛 断 开	切换对象窗口显示	组态未连接	对象已连接	
○ 百特XMA5000智能PID ● 百特FBA5000智能	PID 一两个PID串级,	PID2_SP=PID1_MV			
内给定XMA56V0,地址1,9600,8,N,2	外给定XMA5666,地	נו 2, 9600, 8, א, 2			
测量值通道 :LT103 ~	测量值通道 :LT1	01 ~			
操作值通道 :FV101 ~	操作值通道不控	制~			
AI4通道 :LT101 ~	给定值通道 :LT1	01 ~ AI4ji	li		
○ 直接FID ● 増量FID □ FID正作用	月 〇 直接PID ④	增量PID 🗌 PID正作	用		
给定值: 30 %	给定值: 0.00	%	_		
过程值: 0.00 %	过程值: 0.00				
操作值: 100.00 %	操作值: 13.80	%			
	手探道: 13.80	%	_		
10/21/m · 30	50 FC 90				
$ \underset{\text{RTD}}{\text{RXZ}} u[n] = K_p \left\{ e[n] + \frac{T}{T_i} \sum_{i=0}^n e[i] \right\} $	$+\frac{T_d}{T}\left\{e\left[n\right]-e\left[n-1\right]\right\}$	}			
全部 対象注	$-\frac{K_pT}{T_i}e[n] + \frac{K_pT_d}{T}\{e[n] + \frac{K_pT_d}{T}\}$	n]-2e[n-1]+e[n	-2]}		
自动状态,不能修改操作值。手动时,组态或5 9600,8,2,N.只支持单通道,组态王地址1:0,	界面修改操作值。 不能多通道	F	ID算法		

如果是 FBA5000,则使用 MODBUS 协议。我们支持如下数据通信:

可以选择正反作用,一般是反作用。如果是调节阀控制压力,或者换热器冷出。则需要正作用。

如果使用串级,则选择"两个 PID 串级",是的 PID2_SP=PID1_MV。

如果是 FBA5000,可以监控 AI4 通道。

具体寄存器请参考指导书《基于智能 PID 调节器 FBA5000 的过程自动化实验实训系统指导书》。

3.2 研华 ADAM4000 模块

提供研华 ADAM-4000 DDC 模块,包括 ADAM4117 (可以使用为 ADAM4017), ADAM4024, ADAM4050 三个仪表两套。协议为研华串口协议。或者选择协议为 MODBUS/RTU 串口协议。

如图所示。

百特智能PID 研华DDC模块 华晟云联仿真与控制模块 串口通信计次 串口COM COM1 连接 断开 切换对象窗口显示 组态未连接 对象已连接 ##ADAM4117, 地址1, mA ##ADAM4024, 地址2, mA 通信设置115200, 8, N, 1 AI0: 4.0000 AI1: 4.0000 A11: 4.0000 A11: 4.0000 <	×
出口COM COM1 连接 断开 切換对象窗口显示 组态未连接 对象已连接 1#ADAM4117,地址1,mA 1#ADAM4024,地址2,mA 通信设置115200,8,N,1 AT0: 4.0000	
1#ADAM4117,地址1,mA 1#ADAM4024,地址2,mA 通信设置115200,8,N,1 AT0: 4.0000 0 研华串口协议, ADAM4000 AT1: 4.0000 0 Modbus/RTU协议, ADAM4000 AT2: 4.0000 0 0	
AI1: 4.0000 A02: 4.0 AI3: 4.0000 A03: 4.0	
AI6: 4.0000 连接本地IP或127.0.0.1,520端口 AI6: 4.0000 1#ADAM4050,地址3 1#ADAM4050,地址6 AI7: 4.0000 1#ADAM4050,地址3 1#ADAM4050,地址6 PT0: 0 9600bps,8数据位,1停止位,无效验	
2#ADAM4117, 地址4, mA D10: 4 D10: 0 AIO: 8.0000 1 NT1: 8.0000 第一组1 4117地址1, 4024地址2, 4050地址3	
AII: 0.0000 第二组1 4117地址4,4024地址5,4050地址6	
AI3: 8.0000 A00: 4.0 只有第一组,选点2AI/2A0足够。有第二组,全点	
AI4: 8.0000 A01: 4.0 只能访问基本数据,DI/D0/AI/A0,其他不能 AI5: 4.4000 A01: 4.0 ADAM-4117 8AI,设置-20~20mA,MODBUS 0-65535 AD2: 4.0 ADAM-4024不能访问4个DI,4-20mA,MODBUS 0-408	5
AI6: 0.0000 A03: 4.0 退出	
AI7: 0.0000	

注意,通信速度 9600,无效验,8 数据位,1 停止位。模块的地址图上右侧 说明。注意 ADAM-4050 的输入 DI 为7 个通道。

显示的数字量为十进制。模拟量 4-20mA。

MODBUS 对应 AI: -20mA~20mA 对应 0-65535, 0mA 就是 32767。

MODBUS 对应 AO: 4mA~20mA 对应 0-4095。

具体寄存器请参考其他指导书或者资料。

3.3 华晟云联仿真接口与控制模块

提供华晟云联 AS3700 DDC, 16DI/16D0/14AI/6AO。协议为 MODBUS/RTU 串口协议。

提供华晟云联 AS3900 DDC, 16DI/16D0/14AI/6AO。协议为 MODBUS/TCP 协议。

			(4-3-3-1-1-1-7)の(口)	m201904230710			1		^		
	日村智服	ELTD	研华加U模块	华扇	\$云联伤具与控制模场 	モリア お口通信计	次				
-	串口COM	COM1	~		断开	切換对象窗口显	示	组态已连接	」 対象已连接		
	- 模拟重输入	∖6400-3200	0	模拟量输出	6400-32000		通位	≐讼罢			
	AIO:	6400		400 ·							
	AI1:	6400		A00.			C) Modbus/RTU协议			
	AI2:	6400		A01:	0		0) MODBUS/TCP协议			
	AL3:	6400	-	A02:	0						
	AI5:	6400		A03:	0		もの目	9+121-+-5 70 000181/5-/TCF	対式. 回答か3382	'n	
	AI6:	6400		A00:	0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	本地IP或127.0.0.1。	,520端口	.0	
	AI7:	6400		۸01 ·			1152	OObps,8数据位,1↑	停止位,无效验		
	AI8:	12800		A01.			仅支	持03,06,16功能,该	取16位的数据。 …		
	AI9:	12800		粉合母			16AI.	/16A0/32DI/32DO, 榻	[拟重6400-32000		
	AI10:	12800									
	AI11:	12800		bi0: 4		<u>u</u>					
	AI12:	12800		AS3700, AS3	900模块地址都是20	。寄存器O,16通道DI	,寄存器	4-20为AI			
	AI13:	7040		寄存器100,	16 <u>通</u> 道DO,寄存器1	04─120为16通道AO。习	际只有	6通道			

就一个仪表,所以实际地址无所谓。注意是 14AI/6AO/8DI/8DO。速度 115200BPS。

寄存器 0 为 DI, 4-20 为 AI, 100 为 DO, 104-120 为 AO。输出可读可写。模 拟量数据范围 6400-32000。

MODBUS/TCP 通信与 MODBUS/RTU 通信的寄存器一样。建议使用 127.0.0.1 502 端口,实际本计算机的所有 IP 地址都可以。